《骨科神经损伤学》周劲松,贺宝荣主编|(epub+azw3+mobi+pdf)电子书下载

图书名称:《骨科神经损伤学》

【作 者】周劲松,贺宝荣主编
【页 数】 778
【出版社】 西安:陕西科学技术出版社 , 2018.04
【ISBN号】978-7-5369-7252-0
【价 格】180.00
【分 类】骨损伤-周围神经系统疾病-研究
【参考文献】 周劲松,贺宝荣主编. 骨科神经损伤学. 西安:陕西科学技术出版社, 2018.04.

图书封面:

图书目录:

《骨科神经损伤学》内容提要:

本书正是从神经营养因子、层粘蛋白、细胞介素、免疫反应等对周围神经再生作用等方面出发,介绍了治疗周围神经损伤修复的意义,并介绍了很多最先进的治疗方法,如显微外科方法及基因工程技术等,广大临床医务工作者进行周围神经损伤修复的研究有很高的指导作用。

《骨科神经损伤学》内容试读

第一篇

总Di yi pian

第一章

第一节历史

一、引言

神经系统损伤是严重危害人类健康的疾病之一,神经损伤后的治疗、再生和功能恢复一直以来都是医学领域的历史性难题。对神经损伤的治疗已经进行了数百年的时间,但基础研究和临床的进展主要集中在近半个世纪。

神经损伤分为周围神经损伤和中枢神经损伤,骨科最常见的是周围神经损伤,而中枢神经损伤的致残率却极高,会带来很大的社会负担和经济负担。中枢神经损伤中以外伤后脑卒中、脑外伤、小儿脑瘫和脊髓损伤为最常见的损伤原因,其中脊髓损伤导致的中枢神经损伤在骨科中枢神经损伤中占有较大比重。

在临床上,针对神经损伤疾病采用了药物、手术、组织工程、针灸等多种手段进行治疗,但目前仍缺乏明确有效的治疗措施。比如中枢神经损伤临床康复的手段就包括强制诱发运动作业治疗和机器辅助的运动作业治疗等,但康复理疗的作用却十分有限。其它的如包括神经营养因子和干细胞移植治疗等促进新生神经元的相关研究,可能会具有一定前景,但是目前仍处于实验室的研究阶段。比如周围神经损伤后给予积极的治疗,大多患者还是会有不同程度的功能障碍。近年来,随着基础研究的不断深入,神经营养因子、层粘蛋白、细胞介素、免疫反应等对周围神经再生作用的不断了解,周围神经损伤修复方法已由单一的显微外科方法发展到现在的组织工程技术及基因工程技术,极大的丰富和发展了周围神经损伤修复的研究。所以,随着神经损伤的新技术、新方法的不断地涌现,骨科神经损伤也会越来越受到更多的关注。

二、历史回顾

(一)神经损伤治疗历史

公元130~200年,Galen首次区分神经损伤;7世纪,Aegineta用粘合和缝合法修复神经;13世纪,Roger用蛋清粘连法修复神经,William进行了断裂神经缝合;l4世纪,Guyde chauliac缝合神经、肌腱;1608年,Ferrara(意大利)发表第1篇文章;1871年Hueter介绍神经外膜缝合;

3

第一篇总论

1870年,Philipeaux,Vulpian首次神经移植;1872年,Letievant将远端插入近端(nerve implanta-tion),Marhoe斜切面缝合,Rawa侧侧缝合;I873年,Hueter用外膜缝合进行损伤神经的端端吻合;1878年,Albert首次异种神经移植;1888年,Mayo-Robson成功用于临床;1927年,Bunnell进行了首例面神经移植术;1964年,Simth和Karze报道神经束膜缝合;1976年,Taylor带血管蒂的游离神经移植;1980年,华山医院采用“静脉蒂动脉化的游离神经移植”;1981年,陈中伟桡动脉为血管蒂桡神经浅支翻转移植修复上臂桡神经缺损8~12cm;1992年,Viterbo介绍端侧缝合。

周围神经损伤修复与再生的研究已经有100多年历史。Lundborg G认为在神经科学里,尽管有大量的实验研究,周围神经操作仍是一个最有挑战性和困难的重建外科问题。

神经与骨折愈合的研究有将近90年的历史,神经调节骨折修复的作用机制十分复杂,其生物学过程及其组织学变化的研究虽然取得了一定的进展,但是,仍然有许多问题尚有待深入研究,骨不连就是临床一大难题,研究发现骨不连的骨组织中少有或没有神经纤维长入,提示缺乏神经控制对骨折后产生骨不连或延迟愈合等不良预后有一定影响。如何在分子水平通过神经因素的调节来治疗骨不连及延迟愈合将是下一步临床研究的重点和方向

自体神经移植是目前修复周围神经缺损的最基本手术方式。1885年Albert首先报道2例同种异体神经移植术。其中1例因移植神经坏死于术后6天切除,另1例失随访。1898年Forssman进行了异体神经移植的动物实验,获得了相对成功。20世纪40年代以前陆续有不少临床应用报告出现,多数归于失败,此方法基本被临床淘汰。

(二)中枢神经损伤后的神经再生与修复策略

全世界每年因车祸死亡人数近50万,伤残者1300万。仅美国每年约12.5万人发生残疾。由于治疗技术的进步,早期死亡率有所下降,但后期的康复和护理已成为家庭和社会的沉重负担。目前

针对CNS损伤后的神经再生修复和功能重建仍缺乏有效的治疗手段。

人类大脑和脊髓组成的中枢神经系统(CNS)缺乏自我再生和修复能力一直是长期困扰神经科

学界的一大难题。由于CNS损伤后缺乏再生能力,不能产生新的神经元或再生新的轴突,因而导致

外伤对CNS的损害尤为严重,诸如脑皮层功能受损或消失、脊髓瘫痪等。对高等脊椎动物成熟期

CNS损伤后再生障碍原因的推测有以下几种:①神经元本身再生能力有限;②神经营养因子生成不

足;③细胞外基质不适宜;④损伤产生了抑制神经元生长的因子;⑤损伤局部胶质细胞形成坚硬的瘢痕妨碍轴突生长穿过。但机体中枢神经再生失败的主要原因和完整机制远未阐明。

20世纪80年代,成年哺乳动物CNS损伤后不能再生和恢复的理论受到挑战。这种概念上的突

破主要基于两方面的实验事实:①把外周神经节段移植进脊髓,观察到损伤的脊髓神经纤维能够长距离地延伸。这一发现清楚地显示成年哺乳动物的脊髓神经元仍然保持着再生的能力,从根本上改

变了人们对整个神经再生领域的认识:②人们注意到CNS内的微环境对受损神经的存活和再生至关

重要。因而中枢神经系统轴突再生失败从大的方面来说有两个原因:①损伤的神经元存在内在的再生能力的缺陷;②中枢微环境不适合轴突再生。其中,抑制性因素被认为可能起着更重要的作用。目前我们知道在CNS髓鞘(myelin)中,成熟的寡突胶质细胞表达的髓鞘相关蛋白MAG和Nogo就可以阻止神经生长。近些年来,已经有许多抑制分子被鉴定,像蛋白多糖如phosphacan、versican、brevican、neurocan等,生长锥抑制因子如Netrin-I、EphB3、Semaphorin3A等和细胞外基质分子

Tenascin-R等。当然,中枢微环境中除了抑制因子外,还存在像神经生长因子、粘附分子和轴突诱向分子等诱导生长的因子,他们又可以克服脊髓的抑制环境。

成功的神经再生必须达到以下条件:①必须有一定数量的神经元成活,因为轴突再生所需的结

4

第一章绪论

构和功能性物质只能在细胞体内合成;②再生的轴突必须生长足够的距离,穿过受损的部位;③再生的轴突必须定位于合适的靶细胞,形成功能性连接。还有研究表明,在大鼠和猫中,脊髓损伤后只要有10%的轴突保留下来,即可能恢复一定的运动功能。这就提示只要少量的轴突能保存、恢复或再生就可能支持脊髓一定的功能。基于以上因素,目前促进神经再生与修复的策略也主要是通过

促进内在的再生能力和消除外在的抑制因素两大途径。在CS再生研究过程中,也就形成了两个重

要的研究方向。一个是研究和改变中枢神经内在的生长能力,在这个方向上,目前的研究主要是试

图了解控制CNS和PNS神经元存活和轴突生长的信号途径,从而对细胞内的信号途径实现干预。

另外一个是解决CNS再生的环境问题,例如利用移植的细胞或神经块,提供损伤神经元再生长的合

适环境,试图增强受损神经的再生。在过去的20年里,对CNS发育和损伤的动物研究,获得了许

多令人瞩目的进展,为今后临床上更好地促进CNS再生带来了希望。

神经损伤后,其再生能力与修复时机关系十分密切,伤后1~3个月内是神经修复的“黄金时期”。延误诊断、丧失神经修复的最佳时机,预后则较差。

三、现有方法

(一)一期修复

受伤后数小时内在急诊清创术时行神经修复。其指征是伤口清洁或污染轻、切面较整齐;无全身重要器官合并伤或功能不全;患者能耐受手术;外科医生技术、条件具备。其前提是认真、彻底地清创。如锐器切割伤,神经无论是完全性或不完全损伤,即可进行神经缝合术。对于断肢、断指再植和手指、手掌等肢体远端多组织损伤,神经宜一期修复。(二)延迟一期修复

伤后1~4周内的神经修复手术。患者合并全身损伤或重要脏器功能不全等,急诊清创时不能忍受较长时间手术者,可延迟作神经修复手术。有时因伤口污染较重或复合组织损伤,不能确切了解神经损伤情况,探查神经时若能在伤口内见到神经两断端,可用丝线将两断端缝合在邻近软组织处,以做标志并防止断端回缩,神经本身的修复手术可待伤口愈合后再施行。

(三)二期修复

伤后超过1个月才进行神经修复手术。多数因为损伤广泛、合并肌睦、骨骼损伤、皮肤缺损、创面污染严重,须先行创面或瘫痕修复者;或因早期清创时神经损伤漏诊者;或火器伤、多发伤早期不允许或来不及处理者。一期修复与二期修复各有优点。一期修复如锐器切割伤的神经缝合,利于神经功能束的较准确对合,病人不必二次手术,能保证神经再生即时开始,功能恢复时间相应缩短。对于严重挤压、牵拉撕裂等神经,二期修复时各种组织的创伤性炎症反应已经消退,可以仔细区分正常组织与不正常组织,切除有病变的神经段,提高修复的质量。

(康光明黄小强)】

参考文献

[1]陈统一,张键.周围神经损伤与再生研究的回顾与展望.国外医学,骨科学分册,2004,25(5):259-261.[2]何风春,周围神经损伤修复的历史同顾,医学与哲学,1995,8

[3]杨亚东,薄占东,中国组织工程研究与临床康复,2010,14(41):7735-7738.

[4]Morley J,Marsh S,Drakoulakis E.Does traumatic brain injury result in accelerated fracture healing.Injury,2005,36

6

第一篇总论

(3):363-368.

[5]Eflefterou F.Regulation of bone remodeling by the central and peripheral nervous system.Arch Biochem Biophys,2008,

473(2):231-236.

[6]衷鸿宾,卢世璧,侯树勋,等,同种异体神经移植研究的历史与现状,中国矫形外科杂志,2002,10(12):

1217-8

[7]罗其中,包映辉,董斌,中枢神经损伤后的神经再生与修复策略,中国微侵袭神经外科杂志,2004,9(2):

49-52

第二节神经损伤的病理生理

神经系统是由脑、脊髓以及由它们发出并分布在全身各处的周围神经组成,在人体各器官、系统中占有特殊重要的地位。组成人体各系统的不同细胞、组织和器官都在进行不同的机能活动,这些活动都在神经系统的调节下协调起来完成的。脑和脊髓是神经系统的中枢部分,称为中枢神经系统。由脑发出的脑神经和由脊髓发出的脊神经,是神经系统的周围部分,称为周围神经系统。脑和脊髓通过这些神经支配人体各个部分的生理活动。神经系统的基本结构主要由神经细胞和神经胶质等组成

一、神经元

组成神经系统的基本结构及功能单位,是神经细胞,即神经元(neurons)。神经元的基本结构大致相同,包括细胞体和从细胞体延伸的突起(轴索)两部分:细胞体位于脑、脊髓和神经节中:轴索排列成束形成神经纤维束,由脊髓内发出分布到四肢及躯干形成周围神经。神经元具有感受刺激,传导兴奋的功能,即神经元能完成神经的基本功能。神经元包括运动神经元、感觉神经元和交感神经元。运动神经元位于脊髓的前脚细胞中,感觉神经元和交感神经元位于脊髓椎旁的交感神经节中。

细胞体是细胞含核的部分,其形状大小有很大差别,直径约4~120μm。核大而圆,位于细胞中央,染色质少,核仁明显。细胞质内有斑块状的核外染色质(旧称尼尔小体),还有许多神经元纤维。

细胞突起是由细胞体延伸出来的细长部分,一般包括一条长而分支少的轴突和数条短而呈树状分支的树突。每个神经元可以有一或多个树突,可以接受刺激并将兴奋传入细胞体。每个神经元只有一个轴突,可以把兴奋从胞体传送到另一个神经元或其他组织,如肌肉或腺体。轴突、树突以及套在外面的髓鞘,称为神经纤维。神经纤维末端的细小分支称为神经末梢,分布在全身各处。神经纤维分为有髓鞘纤维和无髓鞘纤维:有髓鞘纤维轴索外包有一层髓磷脂构成的髓鞘(如运动纤维及感觉纤维);无髓鞘纤维轴索外无髓磷脂鞘(如交感纤维)。

神经元虽然只是一个细胞,但由于有伸长的轴突,所以细胞总长度常常很可观。人的神经元可长过1m,长颈鹿脊髓中神经元纤维可一直伸到后肢趾尖,而鲸相应的神经元更长,可达10m。轴突的直径一般都较小,人脑中某些细小的轴突直径只有1μm,但有些动物,如乌贼的巨大轴突直径可大至1mm。

有些神经元有1个轴突和1个树突,称为两极神经元。人视网膜中的视神经元,以及嗅神经元和内耳的神经元都是两极神经元。很多神经元有1个轴突和多个树突,称为多极神经元,如从脊髓

6

···试读结束···

阅读剩余
THE END