• 流体电路增加了用于控制软机器人的模拟选项

    流体电路增加了用于控制软机器人的模拟选项技术摘要软机器人是新兴机器人技术的激动人心的领域,它有潜力改变我们与世界互动的方式。软机器人由柔性材料制成,能够变形并适应其周围的环境,这使得它们非常适合执行需要灵巧性和控制的各种任务。然而,软机器人传统上很难控制,因为它们通常需要复杂的计算和算法。这使得它们在许多应用中的使用非常具有挑战性,尤其是那些需要快速反应或精确运动的应用。最近,研究人员发现了一种新的方法来控制软机器人,这种方法可以极大地简化软机器人的设计和控制。这种方法被称为“流体电路”,它利用流体来控制软机器人的运动。流体电路是一种由微流体通道和阀门组成的小型网络。通过控制通道和阀门的打开和关闭,可以控制流体的流动,从而控制软机器人的运动。流体电路具有许多优点。首先,它们非常简单,易于设计和制造。其次,它们非常高效,因为它们不需要任何昂贵的或复杂的设备。第三,它们非常灵活,可以用于控制各种类型的软机器人。流体电路技术有望极大地改变软机器人的领域。它使软机器人更容易设计和控制,从而为这些令人兴奋的新技术开辟了新的应用领域。技术细节流体电路由微流体通道和阀门组成。微流体通道是微小的通道,通常由PDMS(聚二甲基硅氧烷)或其他柔性材料制成。阀门是用于控制流体流动的装置,通常由电磁铁或压电致动器制成。流体电路的工作原理是通过控制通道和阀门的打开和关闭来控制流体的流动。当通道打开时,流体可以在通道中自由流动。当通道关闭时,流体无法流动。通过控制通道和阀门的打开和关闭,可以控制流体的流动,从而控制软机器人的运动。流体电路具有许多优点。首先,它们非常简单,易于设计和制造。其次,它们非常高效,因为它们不需要任何昂贵的或复杂的设备。第三,它们非常灵活,可以用于控制各种类型的软机器人。流体电路技术有望极大地改变软机器人的领域。它使软机器人更容易设计和控制,从而为这些令人兴奋的新技术开辟了新的应用领域。应用流体电路技术有广泛的应用领域,包括:**医疗机器人:**流体电路可用于控制微型医疗机器人,这些机器人可以进入人体的难以到达的地方。**可穿戴机器人:**流体电路可用于控制可穿戴机器人,这些机器人可以帮助人们进行行走、跑步和其他活动。**工业机器人:**流体电路可用于控制工业机器人,这些机器人可以执行各种任务,如组装、包装和搬运。**军用机器人:**流体电路可用于控制军用机器人,这些机器人可以执行任务,如侦察、监视和作战。流体电路技术有望极大地改变机器人技术领域。它为设计和控制软机器人提供了一种新的方法,从而为这些令人兴奋的新技术开辟了新的应用领域。...

    2023-12-21 流体机器人 流体机器人电影

  • 《ANSYS电池仿真与实例详解 流体传热篇》井文明,宋述军,张寅作|(epub+azw3+mobi+pdf)电子书下载

    图书名称:《ANSYS电池仿真与实例详解流体传热篇》【作者】井文明,宋述军,张寅作【页数】280【出版社】北京:机械工业出版社,2021.09【ISBN号】978-7-111-68662-0【价格】89.00【分类】锂离子电池-仿真-有限元分析-应用软件-燃料电池-仿真-有限元分析-应用软件【参考文献】井文明,宋述军,张寅作.ANSYS电池仿真与实例详解流体传热篇.北京:机械工业出版社,2021.09.图书封面:图书目录:《ANSYS电池仿真与实例详解流体传热篇》内容提要:本书重点讲述了锂离子电池和燃料电池的仿真技术,通过对电池工作过程中的流动、传热、电化学、热电耦合、热失控等场景进行仿真,并通过不同类型电池、不同维度的仿真实例进行讲解,帮助读者建立电池仿真的必要知识和流程,并为其具体工程排除问题时提供方法或思路,促进我国新能源行业电池设计水平的提高。本书可供刚进入新能源行业从事电池设计的工程师阅读,同时兼顾有多年实际工作经验的工程技术人员,此外,对高校相关专业的学生也大有裨益。《ANSYS电池仿真与实例详解流体传热篇》内容试读第1章电池行业概述由于化石能源的日渐紧缺,同时燃料燃烧引起的环境污染问题,寻找一种清洁可循环的新能源技术成为当今主题。据统计,当前全球汽车保有量大约为8亿辆,全球石油消耗量超过65%属于交通耗费,新能源汽车应运而生。而动力电池作为新能源汽车最重要的核心部件,其成本占据整车的40%左右,是相关行业的重点发展方向。当前动力电池主要包括:铅酸电池、镍镉电池、锂离子电池、燃料电池等,其中锂离子电池和燃料电池在未来相当长的时间会是新能源的主流方向。1.1中国锂离子电池产业结构根据国家统计局数据显示(见图1-1-1),2013~2015年,中国锂离子电池产由47.7亿支增长至56亿支,平均增速较慢;而在2016年锂离子电池产量迅速增长到84.7亿支,同比增长51.2%:此后锂离子电池产量迎来爆发式增长,连续数年保持两位数增幅,虽然在2019年增速稍有回落,但是其发展势头依旧良好。18060圆年产量(亿支)一同比增速(%)16051.25014012040超1w31.3308025.9602014.14013.812.410203.184.711395702013201420152016201720182019年份图1-1-12013~2019年中国锂离子电池产量和增速ANSYS电池仿真与实例详解一流体传热篇图1-1-2显示了2013~2019年我国3种主要类型锂离子电池(动力电池、消费类电池和储能电池)出货量的占比变化。在2013~2015年,虽然动力电池占比逐年增加,但是消费类电池一直占据着锂离子电池消费的主导;而在2016年开始,消费类电池需求逐渐饱和,动力电池成为锂离子电池产业快速增长的关键支撑。通过锂离子动力电池的快速增长带动电池行业的发展,从而促进新能源汽车行业的革新,是我国在汽车工业领域实现“弯道超车”最有希望的途径。田储能电池丽消费类电池☑动力电池1008060202013201420152016201720182019年份图1-1-22013~2019年中国锂离子电池消费结构占比1.2全球动力电池格局鉴于锂离子动力电池行业巨大的市场前景,各国相关企业纷纷布局动力电池产业,制定了发展规划。在新能源汽车的动力电池产业中,日、韩起步较早,中国则作为后起之秀奋起直追。当前锂离子动力电池行业基本发展成中、日、韩“三足鼎立”的格局,且各自都有行业龙头企业。日本松下(Paaoic)早在1994年就开始研发锂电池,由住友财团支持,2008年开始与全球最大电动汽车企业特斯拉合作,并于2014年共建超级电池工厂。韩国LG化学(LGC)在1996年开始研究锂电池,2010年成为通用雪佛兰Volt电动车唯一供应商。中国企业宁德时代(CATL)作为中国锂电池行业的龙头,创立于2011年,2012年与德国宝马集团达成战略合作,成为其核心供应商。通过对比Paaoic、LGC和CATL在近5年公布的出货量(见图1-2-1)可知,Paaoic在2017年被CATL超越之前一直都是全球最大的锂电池企业,而在此之后,其出货量也紧随第一名之后,实力依旧强劲。CATL得益于中国电池白名单政策,牢牢占据着中2第1章电池行业概述国动力电池市场50%以上,在2017年一跃成为全球出货量最大的锂离子电池公司。LGC相较于前两者出货量较小,但是其产能扩张速度惊人。35LGC32.530☒Paaoic忍CATL282523.4213202107.36.84.62.4341.620152016201720182019年份图1-2-1三大动力电池厂商近5年出货量对比在市场方面,CATL有中国巨大市场做背靠,地位依旧难以撼动,甚至开始布局欧洲市场,市场有望进一步扩大;Paaoic虽然作为特斯拉合作供应商,但是由于其产能不足,特斯拉在中国市场引入LGC之后,LGC开始迅速蚕食Paaoic的份额,达到82.1%。据SNEReearch数据,2020年1~8月,LGC以15.9GWh的出货量跃居全球第一,CATL和Paaoic分别为15.5GWh和12.4GWh。除此之外,韩国三星SDI/SKI、中国比亚迪等众多锂电池企业都在扩大产能,特别重视中国市场,各大主流电池企业都将重要的生产基地建设在中国,竞争逐渐白热化,同时全球锂离子动力电池的格局也在时刻发生变化。1.3动力电池技术现状目前,动力电池市场主要有三元锂电池、LiFePO4电池、LiM2O4电池、钛酸锂电池(根据正极材料形式命名)等。从动力电池整体配套的情况来看,三元锂电池和LiPO,电池占据了动力电池的大部分市场。由表1-3-1可知,LP04电池在价格、寿命和安全性上都具有较大优势,而三元锂电池的能量密度更大、续航能力更强。根据《中国制造2025》对于动力电池的发展规划可知,到2020年,电池能量密度达到300W/kg。虽然比亚迪等专注于LiFePO,电池研发的“刀片电池”将LiFePO,电池的能量密度提升到新的台阶,但是受到LiFePO,材料性能的限制,依旧难以达到国家规划中对能量密度的要求,而三元锂电池在理论极限上更接近高能量密度的目标,因此毫无争议地成为电池市场专注的重点。由近5年我国主要类型的动力电池市场份额变化(见图1-3-1)可知,三元锂电池市场0ANSYS电池仿真与实例详解一流体传热篇占比逐年增长,并在2018年超过LiFP0,电池的市场份额。由此可见,三元锂电池更加受到市场的青睐。这是因为近些年Li「PO,电池和三元锂电池市场逐渐分化,新能源汽车的增长更多来自于乘用车的市场增长,为了增强续航能力,大多企业选择了三元锂电池,而LFeP04电池主要应用在客车和商用车领域。表1-3-1LiFeP0,电池和三元锂电池性能指标对比性能指标LiFePO.电池三元锂电池正极材料价格/(万元/1)4.112.5电池系统能量密度/(Wh/kg)140160-300电芯价格/(元/Wh)0.70.9循环次数gt20001000安全性较好一般☒区三元锂电池LiFePO4电池☑其他10080604020152016201720182019年份图1-3-1LiFePO,电池和三元锂电池市场份额对比1.4动力电池先进技术分析目前,三元锂电池主要有NCA和NCM两种技术路线。NCA电池的正极材料主要由镍、钴、铝组成,其能量密度高、工艺成熟、成本低,但是主要技术由Sumitomo、Toda、Ecoro等日韩公司垄断。NCA电池的代表型号有:18650型和21700型,能量密度分别达到232~265Wh/kg和260~300Wh/kg,如特斯拉所用的NCA电池就主要使用的是松下的18650型电池。NCA电池具有严苛的制造工艺过程,不仅要求纯氧条件,且在电池生产全过程均要控制湿度在10%以下,这些环境需求让国内厂商望尘莫及。为了绕开NCA材料的技术壁垒,国内多数企业选用了NCM技术路线。NCM电池的正4第1章电池行业概述极材料主要由镍、钴、锰组成,代表型号有:NCM111、NCM523、NCM622和NCM811,其能量密度分别为160Wh/kg、160~200Wh/kg、230Wh/kg和280Wh/kg。目前国内市场上的三元锂电池主要以NCM523体系为主,部分企业开始加速研究NCM622、NCM811材料,CATL公司已经能够将NCM811的能量密度提升到304Wh/kg,随着NCM811在市场上进一步推广,其能量密度将会提升到新的高度。由于三元锂电池主要通过N提供容量,其含量越高,电池的能量密度越大。因此,无论NCA技术还是NCM技术,想要提高动力电池能量密度和续航里程,就要着重对高镍三元材料进行开发。无钴电池最早由Roe等提出,随着不断研究,其中无钴高镍正极材料的LiNi,M.O,(0.5lt1)体系被证明具有清洁环保、价格低廉和比容量高等优点,可能有较高的商业化前景。对于高电压工况,无钴电池更具优势,因此未来也要着重研究高电压电解液。但是当前无钴电池依旧存在倍率性能差、循环稳定性差和阳离子混排等缺陷,难以克服。1.5动力电池仿真技术进展电池模拟研究主要分为两大类:一是基于第一性原理建立模型进行的理论计算,方法包括Hartree-Fock(HF)和DeityFuctioalTheory(DFT),使用软件有MaterialStudio(MS)、VASP(VieaA-iitioSimulatioPackage)、Gauia、WIEN2K、ABINIT、PWcfSIESTA、CRYSTAL等;二是基于有限元或有限体积思想,通过联立方程推导近似解进行仿真模拟研究,主要软件包括COMSOLMultihyic、ANSYS、ABAQUS、ADINA等。总体来说,第一性原理计算擅长于电池材料的微观电子结构及能量计算和预测;有限元及有限体积方程更适合在拥有了电池材料微观参数的基础上需要进一步考虑电池整体宏观性能时的研究,通过建立数学物理模型对电池系统进行多场耦合分析,选取合适的网格和方程,缩短计算时间,减少大量的预实验,对电池各方面性能提供优化方案。现有关于电池仿真的模型主要包含热模型、电学特性模型和老化模型等。这些模型可对电池热效应、容量衰减以及荷电状态等方面展开探索。1.5.1热模型电池热模型用于探索电池产热特性,常见的电-热耦合模型、电化学热耦合模型和热滥用模型多是基于Berardi等引的生热速率模型,用于描述产热率与电流、电池体积、开路电压、工作电压和温度的关系,又可分为不可逆阻抗热和内部熵变引起的化学反应热。Li等)基于此将准二维电化学模型和三维热模型耦合,发现热量主要来源于电池内部反应热极化热和欧姆热。反应热是可逆热且熵变对其有巨大影响。极化热由破坏内部平衡时释放的能量转化而来。欧姆热作为总热量的重要来源之一,主要包括3部分:L在固体相中嵌入嵌出的热量;在电解液中的迁移热;集流体产生的欧姆热。结果显示正极可逆热对总可逆热的贡献比负极大,而不可逆热则主要由负极贡献。5ANSYS电池仿真与实例详解一流体传热篇Ghalkhai等6建立了电化学-热耦合瞬态模型,研究电池内部热量和电流密度分布,发现电池极耳处温度高于其他部位温度,且由于正极极耳处的电流密度最大,导致最高温度出现在正极极耳附近。该研究结果可为降低最高温度和提升温度均匀性提供参考,且表明电池设计中一定要考虑极耳的放置问题。电池在高倍率、碰撞、针刺、短路、过充/放等极端情况下运行时会放出大量热量,容易使温度升高,造成热失控。Dog等)建立一个包含电化学热耦合模块和热滥用模块的模型,对大于8C的高倍率充放电情况进行了研究。发现放电过程更容易使电池过热,导致热失控:较高倍率充电时电阻损失较大,会导致截止电压提前到来,降低电池容量。这项研究重点探索了超过8C充放电时的电池放热情况和热失控机理,对于解决快速充电产热量大的问题有着指导作用。Zhag等8)利用机械-电-热耦合模型研究机械碰撞引起的瞬间短路情况,发现短路瞬间产生的焦耳热是温升主要原因,这是因为接触面积越大,短路电阻越小,电流密度越大,完成相同的电压降所需时间较短,导致升温幅度较大;较小接触面积不会造成热失控,因为电压降非常慢,产生的热量有足够的时间消散。这项工作综合考虑力学、电化学以及热力学多种因素,在研究机械滥用下锂离子电池的安全性能时非常有参考价值,有助于设计更高效安全的电池结构。电池热模型阐明了生热机理和温度分布,便于设计合理的散热方式,保证电池的正常运行。此类模型以热耦合模型研究为主,模型的准确性较好。然而针对针刺等情况的研究较少,且随着电池功率和体积的增大,电池内部的不均匀性会更加明显,上述的简化模型是否符合实际情况则需进一步研究。1.5.2电学特性模型电学特性模型主要有黑箱模型、等效电路模型(EquivaletCircuitModel,ECM)和电化学机理模型,旨在研究不同工况下的电池电压特性。黑箱模型利用电流、电压等数据,通过建立神经网络模型、支持向量机模型、模糊逻辑模型等描述电流、温度、电池荷电状态(SOC)及端电压间的关系。此类模型计算效率高,支持在线估计,但其泛化能力和预测准确度仍需进一步改善。等效电路模型用电路元件等效电池电化学反应,此模型直观性强,准确性可通过和多种算法结合而提高,因此实用性较强。主要有频域模型和时域模型,后者因设备简单而在成本方面具有较大的优势,然而其结构优化及模型准确度与RC阶数的关系仍需进一步探索。Hu等对多种常用ECM进行比较,指出RC阶数在一定范围内时可以提高模型准确度和计算效率,但超出2阶之后反而会起到相反作用。ECM可以与扩展卡尔曼滤波器(EKF)类算法、粒子滤波(Particlefilterig,PF)类算法、滑模观测法、Ho观测法等相互结合,以实现不同准确度的SOC在线估算,EKF类算法因其在非线性过程中独特的优势而与ECM结合最为广泛,然而它的部分参数通过假设获得,使得校准时间过长且计算准确度较低。鉴于此,Wag等o提出一种双无迹卡尔曼滤波器(DUKF)类新算法,考虑了参数的实时变6···试读结束···...

    2023-05-15 ansys有限元分析软件 ansys有限元分析用哪个模块

  • 《板壳非线性流体弹性力学》白象忠,郝亚娟,田振国著|(epub+azw3+mobi+pdf)电子书下载

    图书名称:《板壳非线性流体弹性力学》【作者】白象忠,郝亚娟,田振国著【页数】284【出版社】北京:国防工业出版社,2016.07【ISBN号】7-118-10853-8【分类】壳体(结构)-非线性力学-流体力学-弹性力学-研究【参考文献】白象忠,郝亚娟,田振国著.板壳非线性流体弹性力学.北京:国防工业出版社,2016.07.图书目录:流体弹性力学》内容提要:本书主要内容有:给出流体弹性力学问题的非线性状态方程,以便解决可变形物体的大变形问题,并进一步给出简化关系式介绍描述相互作用的任意拉格朗日-欧拉法、相容拉格朗日-欧拉法、单一拉格朗日法、单一欧拉法以及综合法给出了流体弹性力学的分类及其简化的方程组,其分类的基础是弹性体的位移程度和它的变形场、流体的速度场及压力场的可变性在求解各类构件流固耦合问题中,重点介绍相容拉格朗日-欧拉法的算法,并给出了相应的算例。《板壳非线性流体弹性力学》内容试读第1章绪论流体弹性力学是用来描述流体、气体运动与弹性结构相互作用的学科,是流体力学与弹性力学交叉而形成的一个力学分支,是20世纪中叶,特别是在80年代后期才迅速发展的一门学科。流体弹性力学研究内容的重要特征是两相或多相介质之间的相互作用效果,即变形固体在流体作用下产生的变形或运动:而固体的变形或运动又反过来影响到流场,从而改变流体载荷的分布。流体与弹性体间的交叉性质,致使流体弹性力学理论在不同的工程领域中应用十分广泛,研究对象也极其复杂,特别是对非线性流体弹性问题的研究,促进了计算技术、应用数学和实验技术的不断发展。1.1非线性流体弹性力学与流固耦合流体弹性力学所研究的内容属于流固耦合范畴。流固耦合问题按其耦合机理可分为两大类。第一大类的特征是两相域部分或全部重叠在一起,难以明显地分开,使描述物理现象的方程,特别是本构方程需要针对具体的物理现象来建立,其耦合效应需要通过描述问题的微分方程来体现。“渗流”就是这类问题很典型的例子。第二大类的特征是流固耦合作用仅仅发生在流、固两相的交界面上,方程上的耦合由两相耦合面的平衡及协调关系引入。通过耦合界面,流体动力影响固体运动,而固体的运动又影响流场。在耦合界面上,流体动力及固体的运动事先都是未知的,只有在全部地求解了整个耦合系统之后,才可以给出确切的答案,这正是相互作用的特征所在。若没有这一特征,问题就将失去耦合作用的性质。“船水响应”是这类问题的典型例子。弹性薄壁构件的变形多为几何非线性,再加上流体方程的非线性,必然导致界面上的强非线性。本书研究的主要内容正是产生相互作用接触面的条件和平衡的非线性问题,属于第二大类流固耦合范畴。1.1.1线性流体弹性力学与非线性流体弹性力学传统线性流体弹性力学问题的研究已经有了较成熟的理论基础和研究方法,能较好地揭示线性流体弹性力学系统的物理本质和动力特性。由于分析方法不涉1及非线性因素,因此,不适合非线性系统的分析和研究。非线性因素的多样性、复杂性及其动力特性都具有丰富的内容,因而会出现许多线性系统所没有的特征,例如分岔、混沌问题等。非线性流体弹性力学已经取得了很大的进展,但由于其复杂性,尚有大量问题需要研究。其中包括[2]:提高非定常流体弹性力学的计算方法和计算精度;非线性流体弹性力学的理论分析方法和非线性耦合问题的数值模拟:非线性流体弹性力学的动力特性的研究;非线性动力学模型的建立与简化的表示方法;非线性流体弹性力学的非线性因素分析及处理方法,非线性流体弹性问题中参数影响的研究:非线性流体弹性力学的实验研究:等等。目前,研究流固耦合的典型问题有三种不同的描述方法,即完全线性模型、动力线性模型和完全非线性模型。其中,动力线性模型是指对所研究问题中的静态特性采用非线性描述,而对动力特性做线性化处理。在完全非线性的条件下,流固耦合问题会出现不定解,这就需要把握好初始条件和边界条件。在一些流固耦合研究的领域中,结构设计、材料选择及弹性体外形的复杂化,带来了许多结构非线性因素。流体流动的非定常状态和弹性体在流体作用下的几何非线性变形,使流体和弹性体的相互作用多处于强非线性状态。显而易见,流固耦合非线性现象的研究会日趋复杂化。非线性耦合作用的结果,往往可能导致弹性结构的破坏,因此对非线性问题的研究具有重要的理论意义和实际应用的价值。1.1.2非线性流体弹性力学的特征非线性流体弹性力学所研究的问题,通常可以用耦合方程组的结构形式来表现。耦合方程组同时既有流体定义域又有弹性体定义域,而未知变量也只含有流体变量和弹性体的变量,导致非线性流体弹性力学研究的问题具有以下特征。(1)耦合特征:两种或多种介质(流体包含有液体、气体,固体为弹性体)在系统中相互作用,流体域或固体域皆不可能单独求解。(2)非线性特征:弹性体与流体的运动一般是大范围的非线性运动,因此非线性因素是流体与弹性体耦合作用的结果,是流体运动的非线性和弹性体大变形构成的。(3)变结构特征:弹性体与流体相互作用,会使某些结构发生变化。含有结构或在生物体中发生的流体与弹性体的相互作用,有结构变化的特性,例如降落伞张开的过程,柔性网状结构在液体中的沉降,血液在血管中的流动等。(4)多尺度特征:在研究环境流动问题中,其流动特征尺寸在时间和空间上可跨越10个数量级。弹性体和流体运动的特征周期,一般属于两个以上不同的时间尺度。微尺度机械装置的设计和制造,纳米尺度的流固耦合和生物医学流体动力学的问题中,都具有多尺度和多时间尺度效应的特征。2(5)显式共存性:在解决流体弹性力学问题的过程中,无法消除描述流体运动的独立变量或弹性体变形(或运动)的独立变量。鉴于耦合作用仅仅发生在两相交界面上,方程式上的耦合是由两相耦合面的平衡及协调关系引入的。因此,根据上述耦合特征,可将第二大类流固耦合问题分三种情况:(1)流体与弹性体结构之间有大的相对运动,其典型例子是气动弹性力学问题。(2)流体有限位移的短期问题,如流体中的爆炸或冲击引起弹性体的位形变化。(3)流体有限位移的长期问题,如充液容器的液固耦合振动、近海结构对波的响应、船水响应等都是非常典型的例子。1.1.3非线性流体弹性力学的研究内容(1)为解决可变形物体的大变形问题,须给出流体弹性力学问题的非线性状态方程,包括如何建立准确描述系统耦合动力学行为的数学模型。(2)给出描述相互作用的任意拉格朗日-欧拉法、相容拉格朗日-欧拉法、单一拉格朗日法、单一欧拉法,以及求解时所需要的各种条件。(3)给出流体弹性力学的分类及其简化准则。分类的基础是弹性体的位移程度和它的变形场,流体的速度场及压力场的可变性,由此便可以有根据地得到简化关系式。(4)注意接触条件的精度分析。通常在建立接触条件时,视变形表面与未变形表面等同。例如,在承载表面颤振经典理论中就经常采用这种处理方法,其结果大多数被证明是正确的。但当计算对象属于多尺度、多介质耦合和非线性问题时,需要合理确定计算中的精度,提高计算效率和理论分析、数值分析的可信度。(5)研究弹性结构与黏性流体相互作用的具体问题,给出正确处理真实流体弹性力学问题的方法。例如,在研究类似于输流管道动力学的具体问题时,可在建立流固耦合非线性动力学方程的基础上,把这些非线性机械系统简化成含参数激励的低维非线性动力系统,再进一步研究系统的分岔及混沌问题。其中包括:在风载作用下,柔性索和柔性梁耦合的混沌动力学问题的研究;贮液箱中液体与贮液箱之间相互作用的非线性动力学的分岔和混沌问题的研究:等等。解决不同问题,应当采用不同的方法。通过对目前研究现状的分析,非线性流体弹性力学的研究趋向,近期将向寻求新的理论分析和数值方法的方向发展。1.1.4流体弹性力学分类原则与分类方法在相互作用的问题中,弹性理论、流体力学理论和接触条件的非线性,并不都3起到同等重要的作用,特别是在接触面上,某些条件往往导致相对精度的冗余。接触面处的动力学条件及运动学条件中的高阶量,在小变形或中等变形的情况下对最终解的影响并不大,但往往会带来计算上的巨大困难,因此对流体与弹性体相互接触问题的简化是非常必要的。例如,可以从弹性体的法向位移值、元素的转角、位移场及流体的速度场、压力场的可变性来研究流体弹性力学的各种情况,这就需要将流体弹性力学问题进行分类。引入流体弹性力学问题的分类,可进一步分类细化问题的属性,可将边界条件表达为其他形式,以便在应用中进一步完善并建立新的数学模型,从而使流固耦合理论研究提高到更高水平。流体弹性力学的分类准则是基于壳体位移的法向分量及线性元素的转角、壳体位移场的可变形性及流体速度、压力的估值。在法线位移呈线性变化的剧烈弯曲情况下,可以采用参数构成的方法进行讨论。处理具体问题时,还要考虑到接触面附近的流体流动状态等因素。当前,无论是大变形流固耦合问题,还是中变形或者小变形的流固耦合问题,其解析解还很少见。随着计算技术的不断提高,数值分析方法中的有限元法有了长足的发展。为了促进理论分析及数值计算方法更快地完善,对流固耦合问题中界面相互作用的描述方法进行了分类,且给出了简化准则,可为合理简化不同状态下的流固耦合问题采用适当的理论分析和计算方法提供依据。1.2非线性流体弹性力学的研究方法几十年来,国内外学者对流固动力耦合的理论和计算方法开展了广泛的研究,取得了一些成果,但由于流固耦合问题的复杂性,使得无论是理论分析还是数值计算方面都还保留着一些假设,远未达到理论与实践的统一。对于流固动力耦合系统的求解,比较简单的问题可以采用解析法和半解析法,而具有复杂边界条件的实际工程问题,却很难给出其解析解答。应用有限元法解流固耦合问题,还明显地存在欧拉坐标和拉格朗日坐标在耦合界面上的变化问题:拉格朗日描述不能令人满意地解决物质扭曲变形,进而导致有限元网格缠绕问题,因而无法解决高速运动出现的畸变问题。在欧拉描述架构下,流体是固定的空间区域,采用的是相对于惯性系的固定坐标系,流体流经这些网络区域可以容易解决扭曲变形问题,但仍然存在以下缺点:流体与网格间的相对运动,可导致计算上的困难。弹性体边界与流体运动界面间的跟踪问题难以解决。对于解决大扰动和非线性问题,欲保持耦合界面上的协调与平衡条件,显然很困难,因此有必要进一步研究解决流固耦合问题的方法,以便针对不同类型的问题采用不同的解决办法。41.2.1描述介质相互作用的四种方法采用传统的研究方法解决固态变形体的力学问题时,只使用拉格朗日变数法;而在流体力学中主要使用的是欧拉法;在流体弹性力学中,却又出现这两种方法均应用的情况。流体和弹性体接触面这一条件的表达方法,包含有这两种变数系统,因此要求研究人员具有了解掌握比经典力学文献更能详细描述运动的方法、特点及它们之间相互转换的知识。对于相互接触的两种介质,根据守恒原理和受力平衡的原则,在其接触面上便可以结合拉格朗日法和欧拉法建立相互作用的方程。主要有以下4种方法3]。1.相容拉格朗日-欧拉法(ULE法)》壳体采用拉格朗日法描述,流体采用欧拉法描述。在相互接触面上采用这两种方法的结合,即用相容拉格朗日-欧拉法(UitedLagragia-EuleriaMeth-od)[4来描述它们的相互作用。这样在求解流固耦合问题时,就可直接利用流体力学和弹性力学中的基本方程。当弹性体变形不大时,问题还可以进一步简化,变形后各点的变量可通过变形前各量的泰勒级数解析开拓式来表示。2.任意拉格朗日-欧拉法(ALE法)在任意拉格朗日-欧拉法(AritraryLagragia-EuleriaMethod)中,壳体的运动仍然用拉格朗日法描述,而流体采用在空间任意变形和运动的坐标来描述。这种方法虽然可以消除相容拉格朗日一欧拉法和单一拉格朗日法描述接触条件的不足之处,但流体运动方程却明显地复杂化了,因而适用于壳体形状和流动范围有大变化的问题,主要采用数值方法来求解。ALE法运动学描述具有突出的优点:网格可以任意的方式运动;保留了拉格朗日法所具有的精确跟踪运动边界的特点;保证了网格不发生畸变而引起单元缠结。应用ALE法解决流固耦合问题,通常采用有限元法。在计算过程中,流体网格在下一个时间步上需要重新划分,使流体网格需要频繁地自动更新。高效的网格更新技术显得非常重要,当流体运动速度变大时,往往由于网格更新问题而带来了计算结果的误差。耦合界面上往往出现不匹配网格间的运动,即网格发生畸变,这时载荷的传递也会造成计算上的误差,所以选择最佳的网格速度更新技术是ALE法描述成败的关键。3.单一拉格朗日法(SL法)如果相互作用的两种介质都用拉格朗日法描述,那么这个方法称为单一拉格朗日法(SigleLagragiaMethod)。单一拉格朗日法可部分地克服仅仅满足接触条件不足的缺点,而边值问题将在流动过程不变化的区域内求解。该方法会使流体的运动方程比采用其他变数法复杂,不过经典流体力学中的一般结论会由此发生些变化。54.单一欧拉法(SE法)两种相互作用的介质运动都用欧拉变数来描述,即为单一欧拉法(SigleEule-riaMethod)。单一欧拉法也称为空间描述法。该法的坐标系固定在空间,因而弹性体变形或流动过程中坐标系均保持不变。该法主要用来解决流体力学中的大变形问题。1.2.2理论分析法为了解决工程领域中的实际问题,研究人员除了要致力于理论方面的研究,还应该进行改进和创造新的计算方法的研究。例如:Matthia)给出了解决大位移流固耦合问题的完全耦合解,为非线性系统问题的求解提供了很好的方法;Nico-l]给出了基于小波多尺度的求解方法,用以解决绕圆柱体流动的二维问题,该文还结合两种数学方法计算了大雷诺数不可压缩流体的流固耦合问题;Ⅱ’g-mov7)建立了位于流体中球形空腔受压时稳定性的定性理论。1.2.3实验分析法任何理论的发展都离不开实验的验证。在流固耦合研究中,实验是不可缺少的,尤其涉及非线性问题,其难度很大。非线性问题中的分叉、混沌、突变等现象在实验室的再现都相当棘手,然而其实验结果与观察到的现象却是非线性模型建立的基础,通过实验研究可以发展许多新的理论和方法。例如,波浪与水流的相互作用表现出很强的非线性,其作用机理非常复杂。吴永胜等8]利用波流水槽进行了波浪与流体相互作用的实验。通过实验建立的力学模型,可用来研究河口波浪水流相互作用的动力情况,解决河口泥沙运动及浑浊带形成所带来的实际问题。马高峰等9改进实验装备进行圆截面杆的风致振动,介绍圆截面杆涡激振动机理。通过全桥气动风洞实验,进行了颤振分析、抖振分析和低风速下的涡激振动。谢彬等1研究深水立管系统,由涡激振动导致的应力是一个重要的疲劳载荷,并且分别使用理论和实验的方法研究了柔性立管寿命的疲劳分析模型,包括连接处的变形分析。当前,非线性流体弹性力学耦合问题的实验研究设备短缺,测试手段落后,这都有待于进一步加强。1.2.4半解析法对于复杂的流固耦合系统进行数值分析的方法可归结为两类。一类是半解析方法,即对结构采用有限元离散,而对流体则用近似解析关系描述。经常采用的方法是将流体通过边界积分变为附加质量,对结构采用假定模态及无液振型的办法6···试读结束···...

    2022-05-10 工程力学国防工业出版社 材料力学国防工业出版社第二版答案

学习考试资源网-58edu © All Rights Reserved.  湘ICP备12013312号-3 
站点地图| 免责说明| 合作请联系| 友情链接:学习乐园